home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
SGI Hot Mix 17
/
Hot Mix 17.iso
/
HM17_SGI
/
research
/
lib
/
blk_con.pro
< prev
next >
Wrap
Text File
|
1997-07-08
|
6KB
|
166 lines
;$Id: blk_con.pro,v 1.7 1997/01/15 03:11:50 ali Exp $
;
; Copyright (c) 1994-1997, Research Systems, Inc. All rights reserved.
; Unauthorized reproduction prohibited.
;+
; NAME:
; BLK_CON
;
; PURPOSE:
; This function computes a "fast convolution" of a digital signal
; and an impulse-response sequence.
;
; CATEGORY:
; Digital Signal Processing
;
; CALLING SEQUENCE:
; Result = BLK_CON(Filter, Signal, B_length = B_length)
;
; INPUTS:
; Filter = A P-element floating-point vector containing the impulse-
; response sequence of the digital filter.
; Signal = An N-element floating-point vector containing the discrete
; signal samples.
;
; KEYWORD PARAMETERS:
; B_length = (Block Length) An integer specifying the length of
; the subdivided signal segments. If this paramter is
; not specified, a near-optimal value is chosen by the
; algorithm based upon the length of the impulse-response
; sequence, P. If P is a value less than 11 or greater
; than 377, then B_length must be specified.
;
; RESTRICTIONS:
; 1) The block length must be greater than the filter length.
; B_length > P
; 2) The block length must be less than the number of signal samples.
; B_length < N_elements(Signal)
;
; EXAMPLE:
; Create an impulse-response sequence of length P = 32.
; filter = replicate(1.0, 32) ;Set all points to 1.0
; filter(2*indgen(16)) = 0.5 ;Set even points to 0.5
;
; Create a sampled signal with random noise.
; signal = sin((findgen(1000)/35.0)^2.5)
; noise = (randomu(SEED,1000)-0.5)/2
; signal = signal + noise
;
; Convolve the filter and signal using block convolution.
; result = BLK_CON(filter, signal)
;
; PROCEDURE:
; Implementation of the "overlap-save" method in the frequency domain.
; The discrete signal samples are divided into overlapping segments of
; a length specified by the parameter B_length. B_length may be supplied
; by the user as an optional keyword parameter or determined by the
; algorithm to a near-optimal value. Each input segment consists of P-1
; samples from the previous input segment and (B_length-P+1) new signal
; samples, where P is the length of the filter. Each of these segments
; is processed in the frequency domain and then 'reassembled' in the
; time domain. The first and last input segments are handled differently.
; The result is an N-element floating-point vector containing the
; filtered signal.
;
; REFERENCE:
; Oppenheim, A.V. and Schafer, R.W.
; DIGITAL SIGNAL PROCESSING
; Prentice-Hall, 1975
;
; MODIFICATION HISTORY:
; Written by: GGS, RSI, May 1993
; Modified: GGS, RSI, June 1994
; Added long indexing into vectors. Minor changes in
; the use of intermediate variables reduces memory
; allocation in certain instances. Made slight changes
; to the documentation header.
;-
function BLK_CON, Filter, Signal, B_length = B_length
;Return to caller if an error occurs.
on_error, 2
;Block length is based upon filter length.
p = n_elements(filter)
if n_elements(b_length) eq 0 then begin
if (p lt 11) then stop, $
'Block length must be specified as a keyword parameter.' $
else if (p LE 17) then blen = 64 $
else if (p LE 29) then blen = 128 $
else if (p LE 52) then blen = 256 $
else if (p LE 94) then blen = 512 $
else if (p LE 171) then blen = 1024 $
else if (p LE 377) then blen = 2048 $
else stop, 'Block length must be specified as a keyword parameter.'
endif else blen = long(b_length) ;User specified block length.
;RESTRICTION:1
if p ge blen then stop, $
'Block length must be greater than the filter length.'
;Number of discrete signal samples.
ns = n_elements(signal)
;RESTRICTION:2
if blen ge ns then stop, $
'Block length must be less than the number of signal samples.'
;Number of signal segments of length, blen-p+1
k = ns / (blen - P + 1L)
;Length of last signal segment.
rem = ns mod (blen - p + 1L)
;Represent the filter in frequency domain.
z_filter = fft([filter, fltarr(blen-p)], -1)
;The first segment is handled differently than the rest.
;Forward zero-pad signal segment up to a length of blen.
lower = 0L
upper = blen - p
input = [fltarr(p-1), signal[lower:upper]]
;Allocate storage for the result.
result = fltarr(ns, /nozero)
;Complex point-wise multiplication and inverse transform.
output = float(fft((z_filter * fft(input, -1)), 1) * blen)
;The 'blen' term is a scale factor unique to IDL's FFT algorithm.
;Discard the first p-1 points to obtain the first output segment.
result[0] = output[p-1:blen-1]
;Next place to store.
ip = blen - p + 1L
;Begin to process the subdivided signal segments.
loop = 1L
lower = upper + 1L
upper = lower + blen - p ;upper = lower+(blen-p+1)-1
while loop le k-1L do begin
input = [input[blen-p+1:blen-1], signal[lower:upper]]
output = float(fft((z_filter * fft(input, -1) ),1) * blen)
result[ip] = output[p-1:blen-1] ;Next output segment.
ip = ip + blen - p + 1L
lower = upper + 1L
upper = lower + blen - p
loop = loop + 1L
endwhile
;Last signal segment is of length, rem. If rem is not zero
;there is a signal segment that is handled differently.
if rem ne 0L then begin
output = float(fft((fft([filter, fltarr(p+rem-2)] ,-1) $
* fft([input[blen-p+1:blen-1], signal[lower:lower+rem-1], $
fltarr(p-1)], -1)), 1) * (2*p+rem-2))
;(2*p+rem-2) is an FFT scale factor.
result[ip] = output[p-1:p+rem-2]
endif
return, result
;Clean up intermediate variables.
z_filter = 0
input = 0
output = 0
result = 0
end